Complex Spectral-domain Independent Component Analysis of Electroencephalographic Data
نویسندگان
چکیده
Independent component analysis (ICA) has proved to be a highly useful tool for modeling brain data and in particular electroencephalographic (EEG) data. In this paper, a new method is presented that may better capture the underlying source dynamics than ICA algorithms hereto employed for brain signal analysis. We suppose that a brief, impulse-like activation of an effective signal source elicits a short sequence of spatio-temporal activations in the measured signals. This leads to a model of convolutive signal superposition, in contrast to the instantaneous mixing model commonly assumed for independent component analysis of brain signals. In the spectral-domain, convolutive mixing is equivalent to multiplicative mixing of complex signal sources within distinct spectral bands. We decompose the recorded mixture of complex signals into independent components by a complex version of the infomax ICA algorithm. Some results from a visual spatial selective attention experiment illustrate the differences between real time-domain ICA and complex spectral-domain ICA, and highlight properties of the obtained complex independent components.
منابع مشابه
Complex independent component analysis of frequency-domain electroencephalographic data
Independent component analysis (ICA) has proven useful for modeling brain and electroencephalographic (EEG) data. Here, we present a new, generalized method to better capture the dynamics of brain signals than previous ICA algorithms. We regard EEG sources as eliciting spatio-temporal activity patterns, corresponding to, e.g. trajectories of activation propagating across cortex. This leads to a...
متن کاملRepresenting Spectral data using LabPQR color space in comparison to PCA method
In many applications of color technology such as spectral color reproduction it is of interest to represent the spectral data with lower dimensions than spectral space’s dimensions. It is more than half of a century that Principal Component Analysis PCA method has been applied to find the number of independent basis vectors of spectral dataset and representing spectral reflectance with lower di...
متن کاملReliable Measurement of Cortical Flow Patterns Using Complex Independent Component Analysis of Electroencephalographic Signals
Complex independent component analysis (ICA) of frequency-domain electroencephalographic (EEG) data [1] is a generalization of real time-domain ICA to the frequency-domain. Complex ICA aims to model functionally independent sources as representing patterns of spatio-temporal dynamics. Applied to EEG data, it may allow non-invasive measurement of flow trajectories of cortical potentials. As comp...
متن کاملNoninvasive Imaging of Independent Cortical Flow Patterns
View NONINVASIVE IMAGING OF INDEPENDENT CORTICAL FLOW PATTERNS. While independent component analysis (ICA) is useful for modeling brain and electroencephalographic (EEG) data, current ICA methods for EEG model signal sources as acting in perfect synchrony within spatially fixed domains. In contrast, invasive animal recordings have observed waves of neuronal activity propagating quickly across m...
متن کاملPrediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003